102 research outputs found

    Ultrafast control of Rabi oscillations in a polariton condensate

    Get PDF
    We report the experimental observation and control of space and time-resolved light-matter Rabi oscillations in a microcavity. Our setup precision and the system coherence are so high that coherent control can be implemented with amplification or switching off of the oscillations and even erasing of the polariton density by optical pulses. The data is reproduced by a fundamental quantum optical model with excellent accuracy, providing new insights on the key components that rule the polariton dynamics.Comment: 5 pages, 3 figures, supplementary 7 pages, 4 figures. Supplementary videos: https://drive.google.com/folderview?id=0B0QCllnLqdyBNjlMLTdjZlNhbTQ&usp=sharin

    Measuring and forecasting progress in education: what about early childhood?

    Get PDF
    A recent Nature article modelled within-country inequalities in primary, secondary, and tertiary education and forecast progress towards Sustainable Development Goal (SDG) targets related to education (SDG 4). However, their paper entirely overlooks inequalities in achieving Target 4.2, which aims to achieve universal access to quality early childhood development, care and preschool education by 2030. This is an important omission because of the substantial brain, cognitive and socioemotional developments that occur in early life and because of increasing evidence of early-life learning's large impacts on subsequent education and lifetime wellbeing. We provide an overview of this evidence and use new analyses to illustrate medium- and long-term implications of early learning, first by presenting associations between pre-primary programme participation and adolescent mathematics and science test scores in 73 countries and secondly, by estimating the costs of inaction (not making pre-primary programmes universal) in terms of forgone lifetime earnings in 134 countries. We find considerable losses, comparable to or greater than current governmental expenditures on all education (as percentages of GDP), particularly in low- and lower-middle-income countries. In addition to improving primary, secondary and tertiary schooling, we conclude that to attain SDG 4 and reduce inequalities in a post-COVID era, it is essential to prioritize quality early childhood care and education, including adopting policies that support families to promote early learning and their children's education

    Extreme and long-term drought in the La Plata Basin: event evolution and impact assessment until September 2022

    Get PDF
    The current drought conditions across the Parana-La Plata Basin (LPB) in Brazil-Argentina have been the worst since 1944. While this area is characterized by a rainy season with a peak from October to April, the hydrological year 2020-2021 was very deficient in rainfall, and the situation extended into the 2021-2022 hydrological year. Below-normal rainfall was dominant in south-eastern Brazil, northern Argentina, Paraguay, and Uruguay, suggesting a late onset and weaker South American Monsoon and the continuation of drier conditions since 2021. In fact, in 2021 Brazilian south and south-east regions faced their worst droughts in nine decades, raising the spectre of possible power rationing given the grid dependence on hydroelectric plants. The Paraná-La Plata Basin drought induced damages to agriculture and reduced crop production, including soybeans and maize, with effects on global crop markets. The drought situation continued in 2022 in the Pantanal region. Dry meteorological conditions are still present in the region at the end of September 2022 with below-average precipitation anomalies. Soil moisture anomaly and vegetation conditions are worst in the lower part of the La Plata Basin, in the southern regions. Conversely, upper and central part of the basin show partial and temporary recovery

    Deadly disasters in southeastern South America: flash floods and landslides of February 2022 in Petrópolis, Rio de Janeiro

    Get PDF
    On 15 February 2022, the city of Petrópolis in the highlands of the state of Rio de Janeiro, Brazil, received an unusually high volume of rain within 3 h (258 mm), generated by a strongly invigorated mesoscale convective system. It resulted in flash floods and subsequent landslides that caused the deadliest landslide disaster recorded in Petrópolis, with 231 fatalities. In this paper, we analyzed the root causes and the key triggering factors of this landslide disaster by assessing the spatial relationship of landslide occurrence with various environmental factors. Rainfall data were retrieved from 1977 to 2022 (a combination of ground weather stations and the Climate Hazards Group InfraRed Precipitation – CHIRPS). Remotely sensed data were used to map the landslide scars, soil moisture, terrain attributes, line-of-sight displacement (land surface deformation), and urban sprawling (1985–2020). The results showed that the average monthly rainfall for February 2022 was 200 mm, the heaviest recorded in Petrópolis since 1932. Heavy rainfall was also recorded mostly in regions where the landslide occurred, according to analyses of the rainfall spatial distribution. As for terrain, 23 % of slopes between 45–60∘ had landslide occurrences and east-facing slopes appeared to be the most conducive for landslides as they recorded landslide occurrences of about 9 % to 11 %. Regarding the soil moisture, higher variability was found in the lower altitude (842 m) where the residential area is concentrated. Based on our land deformation assessment, the area is geologically stable, and the landslide occurred only in the thin layer at the surface. Out of the 1700 buildings found in the region of interest, 1021 are on the slope between 20 to 45∘ and about 60 houses were directly affected by the landslides. As such, we conclude that the heavy rainfall was not the only cause responsible for the catastrophic event of 15 February 2022; a combination of unplanned urban growth on slopes between 45–60∘, removal of vegetation, and the absence of inspection were also expressive driving forces of this disaster.</p

    A new method to determine the diet of pygmy hippopotamus in Taï National Park, Côte d’Ivoire

    Get PDF
    This research was funded by “Fond des donations” of the University of Neuchâtel and the “Willy Müller Award” of the Centre Suisse de Recherches Scientifiques en Côte d’Ivoire.Diet determination of endangered species is an essential element in defining successful conservation strategies and optimising captive breeding programmes. In this study, we developed a new diet identification system, derived from standard faecal analysis, to determine the diet of an elusive and endangered herbivore, the pygmy hippopotamus (Choeropsis liberiensis). We collected faecal samples from 10 free-ranging individuals covering a combined home range area of about 50 km2 in Taï National Park, Côte d’Ivoire. In subsequent laboratory analyses, we extracted a large number of leaf epidermis fragments from spatially separated faecal samples and compared them with a reference plant database. Using Multiple Correspondence Analysis (MCA) of epidermis fragments combined with direct visual inspection, we identified the most frequently consumed plant species, which revealed that pygmy hippopotami qualified as intermediate feeders. Their diet was based on at least seven species of monocotyledonae, dicotyledonae and fern groups, with a preference for a small number of other plant species. We evaluate the merit of our method and discuss our findings for developing effective conservation and captive breeding strategies in an endangered species with a wild population of less than 2500 adult individuals.PostprintPeer reviewe

    XUE. Molecular inventory in the inner region of an extremely irradiated Protoplanetary Disk

    Full text link
    We present the first results of the eXtreme UV Environments (XUE) James Webb Space Telescope (JWST) program, that focuses on the characterization of planet forming disks in massive star forming regions. These regions are likely representative of the environment in which most planetary systems formed. Understanding the impact of environment on planet formation is critical in order to gain insights into the diversity of the observed exoplanet populations. XUE targets 15 disks in three areas of NGC 6357, which hosts numerous massive OB stars, among which some of the most massive stars in our Galaxy. Thanks to JWST we can, for the first time, study the effect of external irradiation on the inner (<10< 10 au), terrestrial-planet forming regions of proto-planetary disks. In this study, we report on the detection of abundant water, CO, CO2_2, HCN and C2_2H2_2 in the inner few au of XUE 1, a highly irradiated disk in NGC 6357. In addition, small, partially crystalline silicate dust is present at the disk surface. The derived column densities, the oxygen-dominated gas-phase chemistry, and the presence of silicate dust are surprisingly similar to those found in inner disks located in nearby, relatively isolated low-mass star-forming regions. Our findings imply that the inner regions of highly irradiated disks can retain similar physical and chemical conditions as disks in low-mass star-forming regions, thus broadening the range of environments with similar conditions for inner disk rocky planet formation to the most extreme star-forming regions in our Galaxy.Comment: Accepted for publication in ApJ Letters. 20 pages, 7 figure

    Galaxy cluster mass reconstruction project - I. Methods and first results on galaxy-based techniques

    Get PDF
    This paper is the first in a series in which we perform an extensive comparison of various galaxy-based cluster mass estimation techniques that utilize the positions, velocities and colours of galaxies. Our primary aim is to test the performance of these cluster mass estimation techniques on a diverse set of models that will increase in complexity. We begin by providing participating methods with data from a simple model that delivers idealized clusters, enabling us to quantify the underlying scatter intrinsic to these mass estimation techniques. The mock catalogue is based on a Halo Occupation Distribution (HOD) model that assumes spherical Navarro, Frenk and White (NFW) haloes truncated at R₂₀₀, with no substructure nor colour segregation, and with isotropic, isothermal Maxwellian velocities. We find that, above 1014Mʘ, recovered cluster masses are correlated with the true underlying cluster mass with an intrinsic scatter of typically a factor of 2. Below 1014Mʘ, the scatter rises as the number of member galaxies drops and rapidly approaches an order of magnitude. We find that richness-based methods deliver the lowest scatter, but it is not clear whether such accuracy may simply be the result of using an over-simplistic model to populate the galaxies in their haloes. Even when given the true cluster membership, large scatter is observed for the majority non-richness-based approaches, suggesting that mass reconstruction with a low number of dynamical tracers is inherently problematic

    Effects of composition and phase relations on mechanical properties and crystallisation of silicate glasses

    Get PDF
    Crystallization, mechanical properties and workability are all important for commercialization and optimization of silicate glass compositions. However, the inter-relations of these properties as a function of glass composition have received little investigation. Soda-lime-silica glasses with Na2O-MgO-CaO-Al2O3-SiO2 compositions relevant to commercial glass manufacture were experimentally studied and multiple liquidus temperature and viscosity models were used to complement the experimental results. Liquidus temperatures of the fabricated glasses were measured by the temperature gradient technique, and Rietveld refinements were applied to X-Ray powder diffraction (XRD) data for devitrified glasses, enabling quantitative determination of the crystalline and amorphous fractions and the nature of the crystals. Structural properties were investigated by Raman spectroscopy. Acoustic echography, micro-Vicker’s indentation and single-edge notched bend testing methods were used to measure Young’s moduli, hardness and fracture toughness, respectively. It is shown that it is possible to design lower-melting soda-lime-silica glass compositions without compromising their mechanical and crystallization properties. Unlike Young’s modulus, brittleness is highly responsive to the composition in soda-lime-silica glasses, and notably low brittleness values can be obtained in glasses with compositions in the wollastonite primary phase field: an effect that is more pronounced in the silica primary phase field. The measured bulk crystal fractions of the glasses subjected to devitrification at the lowest possible industrial conditioning temperatures, indicate that soda-lime-silica glass melts can be conditioned close to their liquidus temperatures within the compositional ranges of the primary phase fields of cristobalite, wollastonite or their combinations
    corecore